Heat Production and the Importance of Temperature Management in Malignant Hyperthermia

Authors

  • D. Freiermuth Department of Anesthesia, Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital Basel, Basel, Switzerland
  • O. Bandschapp Department of Anesthesia, Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital Basel, Basel, Switzerland
  • P.A. Iaizzo Departments of Surgery and Integrative Biology and Physiology, Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA

DOI:

https://doi.org/10.14205/2310-9394.2013.01.01.6

Keywords:

Anesthesia, Malignant Hyperthermia, Ryanodine Recepetor Calcium Release.

Abstract

Malignant hyperthermia (MH) is a rare pharmacogenetic, subclinical disorder of the striated skeletal muscle. Acute episodes are usually triggered by exposure to halogenated volatile anesthetics and/or succinylcholine. During an MH episode, the patient's muscles go into a hypermetabolic state, which in turn causes variable clinical signs and symptoms: i.e., muscle rigidity, respiratory and metabolic acidosis, muscle breakdown, cardiac responses (tachycardia) and ultimately elevation of body temperature. At the cellular level, MH is the consequence of abnormally sustained high myoplasmic calcium concentrations, which causes dramatically elevated turnover of energy rich compounds (e.g., adenosine triphosphate (ATP)). Although often a late sign of MH, the production of heat can play an important role in the treatment and clinical consequences of an elicited episode. In other words, the production of heat thereby is not merely a simple consequence of MH, but a substrate of high relevance during an ongoing MH event: it has been suggested that heat itself may trigger MH in some genetic mutations. Since the introduction of dantrolene, which has provided a specific MH therapy by normalizing myoplasmic calcium levels, mortality of MH has decreased from 70% to 4%. Nevertheless, strong consideration for proper temperature management of the known or suspected MH patient, in all clinical areas (pre-, intra- and post-operative), is critical: as hyperthermia can cause multisystemic involvements, including the brain, the heart and the hemostatic system.

References

Bandschapp O, Girard T. Malignant hyperthermia. Swiss Med Wkly 2012; 142: w13652.

Denborough M, Lovell R. Anaesthetic deaths in a family (letter). Lancet 1960; 276: 45. http://dx.doi.org/10.1016/S0140-6736(60)92690-8

Denborough M. Malignant hyperthermia. Lancet 1998; 352: 1131-36. http://dx.doi.org/10.1016/S0140-6736(98)03078-5

Hall LW, Woolf N, Bradley JW, Jolly DW. Unusual reaction to suxamethonium chloride. Br Med J 1966; 2: 1305. http://dx.doi.org/10.1136/bmj.2.5525.1305

Britt BA, Kalow W. Malignant hyperthermia: A statistical review. Can Anaesth Soc J 1970; 17: 293-15. http://dx.doi.org/10.1007/BF03004694

Lucke JN, Hall GM, Lister D. Porcine malignant hyperthermia. I: Metabolic and physiological changes. Br J Anaesth 1976; 48: 297-304. http://dx.doi.org/10.1093/bja/48.4.297

Nelson TE. Heat production during anesthetic-induced malignant hyperthermia. Biosci Rep 2001; 21: 169-79. http://dx.doi.org/10.1023/A:1013696124358

Gjessing J, Barsa J, Tomlin PJ. A possible means of rapid cooling in the emergency treatment of malignant hyperpyrexia. Br J Anaesth 1976; 48: 469-73. http://dx.doi.org/10.1093/bja/48.5.469

Ruitenbeek W, Verburg MP, Janssen AJ, Stadhouders AM, Sengers RC. In vivo induced malignant hyperthermia in pigs. Ii. Metabolism of skeletal muscle mitochondria. Acta Anaesthesiol Scand 1984; 28: 9-13. http://dx.doi.org/10.1111/j.1399-6576.1984.tb02002.x

Foster DO, Frydman ML. Brown adipose tissue: The dominant site of nonshivering thermogenesis in the rat. Experientia Suppl 1978; 32: 147-51. http://dx.doi.org/10.1007/978-3-0348-5559-4_16

Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509-17. http://dx.doi.org/10.1056/NEJMoa0810780

Richard D, Monge-Roffarello B, Chechi K, Labbe SM, Turcotte EE. Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Front Endocrinol 2012; 3: 36. http://dx.doi.org/10.3389/fendo.2012.00036

Muzik O, Mangner TJ, Granneman JG. Assessment of oxidative metabolism in brown fat using pet imaging. Front Endocrinol 2012; 3: 15. http://dx.doi.org/10.3389/fendo.2012.00015

Hall GM, Bendall JR, Lucke JN, Lister D. Porcine malignant hyperthermia. Ii: Heat production. Br J Anaesth 1976; 48: 305-308. http://dx.doi.org/10.1093/bja/48.4.305

Britt BA, Endrenyi L, Kalow W, Peters PL. The adenosine triphosphate (atp) depletion test: Comparison with the Freiermuth et al. caffeine contracture test as a method of diagnosing malignant hyperthermia susceptibility. Can Anaesth Soc J 1976; 23: 624-35. http://dx.doi.org/10.1007/BF03006745

Ellis FR, Harriman DG, Keaney NP, Kyei-Mensah K, Tyrrell JH. Halothane-induced muscle contracture as a cause of hyperpyrexia. Br J Anaesth 1971; 43: 721-22.

Hall GM, Lucke JN, Lister D. Porcine malignant hyperthemia iv: Neuromuscular blockade. Br J Anaesth 1976; 48: 1135- 41. http://dx.doi.org/10.1093/bja/48.12.1135

A protocol for the investigation of malignant hyperpyrexia (MH) susceptibility. The european malignant hyperpyrexia group. Br J Anaesth 1984; 56: 1267-69. http://dx.doi.org/10.1093/bja/56.11.1267

Larach MG. Standardization of the caffeine halothane muscle contracture test. North american malignant hyperthermia group. Anesth Analg 1989; 69: 511-15. http://dx.doi.org/10.1213/00000539-198910000-00015

Bandschapp O, Iaizzo P, Girard T. Malignant hyperthermia - update of diagnostics. Trends in Anaesthesia and Critical Care 2012; 2: 218-23. http://dx.doi.org/10.1016/j.tacc.2012.08.001

MacLennan DH, Duff C, Zorzato F, Fujii J, Phillips M, Korneluk RG, et al. Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 1990; 343: 559-61. http://dx.doi.org/10.1038/343559a0

Toppin PJ, Chandy TT, Ghanekar A, Kraeva N, Beattie WS, Riazi S. A report of fulminant malignant hyperthermia in a patient with a novel mutation of the cacna1s gene. Can J Anaesth 2010; 57: 689-93. http://dx.doi.org/10.1007/s12630-010-9314-4

Eltit JM, Bannister RA, Moua O, Altamirano F, Hopkins PM, Pessah IN, et al. Malignant hyperthermia susceptibility arising from altered resting coupling between the skeletal muscle l-type ca2+ channel and the type 1 ryanodine receptor. Proc Natl Acad Sci USA 2012; 109: 7923-28. http://dx.doi.org/10.1073/pnas.1119207109

Kraeva N, Riazi S, Loke J, Frodis W, Crossan ML, Nolan K, Kraev A, Maclennan DH. Ryanodine receptor type 1 gene mutations found in the canadian malignant hyperthermia population. Can J Anaesth 2011; 58: 504-13. http://dx.doi.org/10.1007/s12630-011-9494-6

Dulhunty AF, Beard NA, Pouliquin P, Kimura T. Novel regulators of ryr Ca2+ release channels: Insight into molecular changes in genetically-linked myopathies. J Muscle Res Cell Motil 2006; 27: 351-65. http://dx.doi.org/10.1007/s10974-006-9086-1

Bandschapp O, Iaizzo PA. Induction of therapeutic hypothermia requires modulation of thermoregulatory defenses. Therapeutic Hypothermia and Temperature Management 2011; 1: 77-85. http://dx.doi.org/10.1089/ther.2010.0010

Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol 2000; 89: 81-88.

Morrissette JM, Franck JP, Block BA. Characterization of ryanodine receptor and ca2+-atpase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans). J Exp Biol 2003; 206: 805-12. http://dx.doi.org/10.1242/jeb.00158

Arruda AP, Nigro M, Oliveira GM, de Meis L. Thermogenic activity of Ca2+-atpase from skeletal muscle heavy sarcoplasmic reticulum: The role of ryanodine Ca2+ channel. Biochim Biophys Acta 2007; 1768: 1498-505. http://dx.doi.org/10.1016/j.bbamem.2007.03.016

Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC, Shaikh SA, et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 2012; 18: 1575-79. http://dx.doi.org/10.1038/nm.2897

Kim JH, Kwon TH, Koh SB, Park JY. Parkinsonismhyperpyrexia syndrome after deep brain stimulation surgery: Case report. Neurosurgery 2010; 66: E1029. http://dx.doi.org/10.1227/01.NEU.0000367799.38332.43

Robottom BJ, Weiner WJ, Factor SA. Movement disorders emergencies. Part 1: Hypokinetic disorders. Arch Neurol 2011; 68: 567-72. http://dx.doi.org/10.1001/archneurol.2011.84

Allen GC, Brubaker CL. Human malignant hyperthermia associated with desflurane anesthesia. Anesth Analg 1998; 86: 1328-31.

Gatz EE, Wingard DW. Malignant hyperthermia. Nebr Med J 1973; 58: 434-37.

Iaizzo PA, Kehler CH, Carr RJ, Sessler DI, Belani KG. Prior hypothermia attenuates malignant hyperthermia in susceptible swine. Anesth Analg 1996; 82: 803-809.

Yasuda T, Delbono O, Wang ZM, Messi ML, Girard T, Urwyler A, et al. Jp-45/jsrp1 variants affect skeletal muscle excitation-contraction coupling by decreasing the sensitivity of the dihydropyridine receptor. Hum Mutat 2013; 34(1): 184- 90. http://dx.doi.org/10.1002/humu.22209

Mitchell AM, Kennedy RR. Preoperative core temperatures in elective surgical patients show an unexpected skewed distribution. Can J Anaesth 2001; 48: 850-53. http://dx.doi.org/10.1007/BF03017348

Nonneman DJ, Brown-Brandl T, Jones SA, Wiedmann RT, Rohrer GA. A defect in dystrophin causes a novel porcine stress syndrome. BMC Genomics 2012; 13: 233. http://dx.doi.org/10.1186/1471-2164-13-233

Denborough M, Hopkinson KC, O'Brien RO, Foster PS. Overheating alone can trigger malignant hyperthermia in piglets. Anaesth Intensive Care 1996; 24: 348-54.

Lichtman AD, Oribabor C. Malignant hyperthermia following systemic rewarming after hypothermic cardiopulmonary bypass. Anesth Analg 2006; 102: 372-75. http://dx.doi.org/10.1213/01.ane.0000189596.70694.36

Groom L, Muldoon SM, Tang ZZ, Brandom BW, Bayarsaikhan M, Bina S, et al. Identical de novo mutation in the type 1 ryanodine receptor gene associated with fatal, stress-induced malignant hyperthermia in two unrelated families. Anesthesiology 2011; 115: 938-45. http://dx.doi.org/10.1097/ALN.0b013e3182320068

Capacchione JF, Muldoon SM. The relationship between exertional heat illness, exertional rhabdomyolysis, and malignant hyperthermia. Anesth Analg 2009; 109: 1065-69. http://dx.doi.org/10.1213/ane.0b013e3181a9d8d9

Pandita TK, Pandita S, Bhaumik SR. Molecular parameters of hyperthermia for radiosensitization. Crit Rev Eukaryot Gene Expr 2009; 19: 235-51. http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v19.i3.50

Wass CT, Lanier WL, Hofer RE, Scheithauer BW, Andrews AG. Temperature changes of > or = 1 degree c alter functional neurologic outcome and histopathology in a canine model of complete cerebral ischemia. Anesthesiology 1995; 83: 325-35. http://dx.doi.org/10.1097/00000542-199508000-00013

Zeller L, Novack V, Barski L, Jotkowitz A, Almog Y. Exertional heatstroke: Clinical characteristics, diagnostic and therapeutic considerations. Eur J Intern Med 2011; 22: 296- 99. http://dx.doi.org/10.1016/j.ejim.2010.12.013

Bertolizio G, Mason L, Bissonnette B. Brain temperature: Heat production, elimination and clinical relevance. Paediatr Anaesth 2011; 21: 347-58. http://dx.doi.org/10.1111/j.1460-9592.2011.03542.x

Lim CL, Mackinnon LT. The roles of exercise-induced immune system disturbances in the pathology of heat stroke: The dual pathway model of heat stroke. Sports Med 2006; 36: 39-64. http://dx.doi.org/10.2165/00007256-200636010-00004

Bouchama A, Knochel JP. Heat stroke. N Engl J Med 2002; 346: 1978-88. http://dx.doi.org/10.1056/NEJMra011089

White MG, Luca LE, Nonner D, Saleh O, Hu B, Barrett EF, Barrett JN. Cellular mechanisms of neuronal damage from hyperthermia. Prog Brain Res 2007; 162: 347-71. http://dx.doi.org/10.1016/S0079-6123(06)62017-7

Burke S, Hanani M. The actions of hyperthermia on the autonomic nervous system: Central and peripheral mechanisms and clinical implications. Auton Neurosci 2012; 168: 4-13. http://dx.doi.org/10.1016/j.autneu.2012.02.003

Castillo J, Davalos A, Noya M. Aggravation of acute ischemic stroke by hyperthermia is related to an excitotoxic mechanism. Cerebrovasc Dis 1999; 9: 22-27. http://dx.doi.org/10.1159/000015891

Larach MG, Gronert GA, Allen GC, Brandom BW, Lehman EB. Clinical presentation, treatment, and complications of malignant hyperthermia in north america from 1987 to 2006. Anesth Analg 2010; 110: 498-507. http://dx.doi.org/10.1213/ANE.0b013e3181c6b9b2

Torossian A. Survey on intraoperative temperature management in europe. Eur J Anaesthesiol 2007; 24: 668- 75. http://dx.doi.org/10.1017/S0265021507000191

Shin J, Kim J, Song K, Kwak Y. Core temperature measurement in therapeutic hypothermia according to different phases: Comparison of bladder, rectal, and tympanic versus pulmonary artery methods. Resuscitation 2013; 84: 810-17. http://dx.doi.org/10.1016/j.resuscitation.2012.12.023

Burkman JM, Posner KL, Domino KB. Analysis of the clinical variables associated with recrudescence after malignant hyperthermia reactions. Anesthesiology 2007; 106: 901-906; quiz 1077-1078. http://dx.doi.org/10.1097/01.anes.0000265148.86566.68

Glahn KP, Ellis FR, Halsall PJ, Muller CR, Snoeck MM, Urwyler A, et al. Recognizing and managing a malignant hyperthermia crisis: Guidelines from the european malignant hyperthermia group. Br J Anaesth 2010; 105: 417-20. http://dx.doi.org/10.1093/bja/aeq243

Kobayashi S, Bannister ML, Gangopadhyay JP, Hamada T, Parness J, Ikemoto N. Dantrolene stabilizes domain interactions within the ryanodine receptor. J Biol Chem 2005; 280: 6580-87. http://dx.doi.org/10.1074/jbc.M408375200

Inan S, Wei H. The cytoprotective effects of dantrolene: A ryanodine receptor antagonist. Anesth Analg 2010; 111: 1400-10. http://dx.doi.org/10.1213/ANE.0b013e3181f7181c

Burton A. Human calorimetry ii. The average temperature of the tissues of the body. J Nutr 1935; 9: 261-80.

Lenhardt R, Sessler DI. Estimation of mean body temperature from mean skin and core temperature. Anesthesiology 2006; 105: 1117-21. http://dx.doi.org/10.1097/00000542-200612000-00011

Bandschapp O, Sweney M, Miller J, Tahvildari S, Sigg D, Iaizzo P. Induction of mild hypothermia by non-invasive body cooling: Assessment on healthy, unanesthetized subjects. Therapeutic Hypothermia and Temperature Management 2011; 1: 193-98. http://dx.doi.org/10.1089/ther.2011.0006

Iaizzo PA, Jeon YM, Sigg DC. Facial warming increases the threshold for shivering. J Neurosurg Anesthesiol 1999; 11: 231-39. http://dx.doi.org/10.1097/00008506-199910000-00002

Plattner O, Kurz A, Sessler DI, Ikeda T, Christensen R, Marder D, et al. Efficacy of intraoperative cooling methods. Anesthesiology 1997; 87: 1089-95. http://dx.doi.org/10.1097/00000542-199711000-00013

Downloads

Published

2013-11-27

Issue

Section

Articles