Transport and Absorption of Anesthetic Vapors in a Mouth-Lung Model Extending to G9 Bronchioles

Authors

  • Jinxiang Xi Department of Mechanical and Biomedical Engineering, Central Michigan University, Mount Pleasant, MI, USA
  • JongWon Kim Department of Mechanical and Biomedical Engineering, Central Michigan University, Mount Pleasant, MI, USA
  • Xiuhua A. Si Department of Engineering, Calvin College, Grand Rapids, MI, USA

DOI:

https://doi.org/10.14205/2310-9394.2013.01.01.2

Keywords:

Vapor transport, wall absorption, inhalation anesthetics, ultrafine aerosols, lung model.

Abstract

Background: The inhalation of anesthetic vapors into the lungs is a function of both the respiration and inhalant property. Factors which influence the alveolar concentration of anesthetics include breathing activities, airway morphology, anesthetic diffusivity, and wall absorption rate. Administered anesthetic levels could be significantly different from the alveolar level due to wall absorption loss and gas mixing in the airway.

Objective: To assess the transport and absorption of inhaled anesthetics in an anatomically accurate respiratory airway geometry. Specifically aims include understanding the transport of inhaled vapors, quantifying the pulmonary dosage of administered anesthetics, and identifying factors that influence airway absorption losses.

Methods: The geometry consisted of a CT-based mouth-throat (MT) model and a tracheobronchial (TB) model which extends to G9 bronchioles and consists of 115 outlets. Vapor transport and absorption were simulated using the Chemical Species model coupled with a user-defined vapor-absorption module.

Results: Unlike previously assumed developed flows after G6, features of developing flows are still apparent in the G9 bronchioles in this study. Large variations of bronchiolar vapor concentrations were observed among the five lobes. Under quiet breathing conditions, vapor concentrations at the G9 outlets are 15 - 30% of the inhaled concentration level due to gas mixing and wall absorption. The delivered dose to the pulmonary region varies from 48% to 96%, depending on the vapor diffusivity and solubility. Vapor depletion due to wall absorption is significant (52%) for highly soluble anesthetics and is inconsequential for low solubility ones.

Conclusion: A computer model was developed that implemented a wall absorption module in a realistic mouth-lung model extending to G9. This model provides the basis for future quantitative studies of the relationship between administered anesthetics and induced anesthetic level.

References

Kvolik S, Glavas-Obrovac L, Bares V, Karner I. Effects of inhalation anesthetics halothane, sevoflurane, and isoflurane on human cell lines. Life Sci 2005; 77(19): 2369-83. http://dx.doi.org/10.1016/j.lfs.2004.12.052

Haghighi SS, Madsen R, Green KD, Oro JJ, Kracke GR. Suppression of motor evoked potentials by inhalation anesthetics. J Neurosurg Anesthesiol 1990; 2(2): 73-78. http://dx.doi.org/10.1097/00008506-199006000-00003

Campagna JA, Miller KW, Forman SA, Mechanisms of Actions of Inhaled Anesthetics. New Engl J Med 2003; 348(21): 2110-24. http://dx.doi.org/10.1056/NEJMra021261

Maciver MB, Roth SH. Inhalation anaesthetics exhibit pathway-specific and differential actions on hippocampal synaptic responses in vitro. Br J Anaesthesia 1988; 60(6): 680-91. http://dx.doi.org/10.1093/bja/60.6.680

Merkel G, Eger EI. A comparative study of halothane and halopropane anesthesia including method for determining equipotency. Anesthesiology 1963; 24(3): 346-&. http://dx.doi.org/10.1097/00000542-196305000-00016

Fiserova-Bergerova V, Holaday DA. Uptake and Clearance of Inhalation Anesthetics in Man. Drug Metab Rev 1979; 9(1): 43-60. http://dx.doi.org/10.3109/03602537909046433

Cheng KH, Cheng YS, Yeh HC, Guilmette RA, Simpson SQ, Yang SQ, Swift DL. In vivo measurements of nasal airway dimensions and ultrafine aerosol depositing in human nasal and oral airways. J Aerosol Sci 1996; 27: 785-801. http://dx.doi.org/10.1016/0021-8502(96)00029-8

Kim JW, Xi J, Si XA. Dynamic growth and deposition of hygroscopic aerosols in the nasal airway of a 5-year-old child. Int J Numer Methods Biomed Eng 2013; 29(1): 17-39. http://dx.doi.org/10.1002/cnm.2490

Si XA, Xi J, Kim J, Zhou Y, Zhong H. Modeling of release position and ventilation effects on olfactory aerosol drug delivery. Respir Physiol Neurobiol 2013; 186(1): 22-32. http://dx.doi.org/10.1016/j.resp.2012.12.005

Xi J, Berlinski A, Zhou Y, Greenberg B, Ou X. Breathing Resistance and Ultrafine Particle Deposition in NasalLaryngeal Airways of a Newborn, an Infant, a Child, and an Adult. Annals Biomed Eng 2012; 40(12): 2579-95. http://dx.doi.org/10.1007/s10439-012-0603-7

Zhao K, Scherer PW, Hajiloo SA, Dalton P. Effect of anatomy on human nasal air flow and odorant transport patterns: Implications for olfaction. Chem Senses 2004; 29(5): 365-79. http://dx.doi.org/10.1093/chemse/bjh033

Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W. Deposition of particles in the human respiratory tract in the size range of 0.005 - 15 microns. J Aerosol Sci 1986; 17(5): 811-25. http://dx.doi.org/10.1016/0021-8502(86)90035-2

Jaques PA, Kim CS. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhalation Toxicol 2000; 12(8): 715-31. http://dx.doi.org/10.1080/08958370050085156

Kim CS, Jaques PA. Analysis of total respiratory deposition of inhaled ultrafine particles in adult subjects at various breathing patterns. Aerosol Sci Technol 2004; 38(6): 525-40. http://dx.doi.org/10.1080/02786820490465513

Morawska L, Hofmann W, Hitchins-Loveday J, Swanson C, Mengersen K. Experimental study of the deposition of combustion aerosols in the human respiratory tract. J Aerosol Sci 2005; 36: 939-57. http://dx.doi.org/10.1016/j.jaerosci.2005.03.015

Stahlhofen W, Rudolf G, James AC. Intercomparison of experimental regional aerosol deposition data. J Aerosol Med 1989; 2(3): 285-308. http://dx.doi.org/10.1089/jam.1989.2.285

Heenan AF, Matida E, Pollard A, Finlay WH. Experimental measurements and computational modeling of the flow field in an idealized human oropharynx. Exper Fluids 2003; 35(1): 70-84. http://dx.doi.org/10.1007/s00348-003-0636-7

Johnstone A, Uddin M, Pollard A, Heenan A, Finlay WH. The flow inside an idealised form of the human extra-thoracic airway. Exper Fluids 2004; 37: 673-89. http://dx.doi.org/10.1007/s00348-004-0857-4

Zhang Y, Chia TL, Finlay WH. Experimental measurement and numerical study of particle deposition in highly idealized mouth-throat models. Aerosol Sci Technol 2006; 40(5): 361- 72. http://dx.doi.org/10.1080/02786820600615055

Zhang Y, Finlay WH, Matida EA. Particle deposition measurements and numerical simulation in a highly idealized mouth-throat. J Aerosol Sci 2004; 35(7): 789-803. http://dx.doi.org/10.1016/j.jaerosci.2003.12.006

Cheng KH, Cheng YS, Yeh HC, Swift DL. An experimental method for measuring aerosol deposition efficiency in the human oral airway. Am Ind Hyg Assoc J 1997; 58: 207-13. http://dx.doi.org/10.1080/15428119791012856

Cheng YS, Su YF, Yeh HC, Swift DL. Deposition of Thoron progeny in human head airways. Aerosol Sci Technol 1993; 18: 359-75. http://dx.doi.org/10.1080/02786829308959610

Frederick CB, Bush ML, Lomax LG, Black KA, Finch L, Kimbell JS, et al. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Toxicol Appl Pharmacol 1998; 152(1): 211- 31. http://dx.doi.org/10.1006/taap.1998.8492

Kimbell JS, Subramaniam RP. Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages. Inhalation Toxicol 2001; 13(5): 325-34. http://dx.doi.org/10.1080/08958370151126185

Shi H, Kleinstreuer C, Zhang Z. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. J Biomech Eng-Trans Asme 2006; 128(5): 697-706. http://dx.doi.org/10.1115/1.2244574

Zhang Z, Kleinstreuer C. Species heat and mass transfer in a human upper airway model. Int J Heat Mass Transfer 2003; 46(25): 4755-68. http://dx.doi.org/10.1016/S0017-9310(03)00358-2

Hofmann W, Golser R, Balashazy I. Inspiratory deposition efficiency of ultrafine particles in a human airway bifurcation model. Aerosol Sci Technol 2003; 37(12): 988-94. http://dx.doi.org/10.1080/02786820300898

Xi J, Longest PW, Martonen TB. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol 2008; 104(6): 1761-77. http://dx.doi.org/10.1152/japplphysiol.01233.2007

Taylor AB, Borhan A, Ultman JS. Three-dimensional simulations of reactive gas uptake in single airway bifurcations. Annals Biomed Eng 2007; 35(2): 235-49. http://dx.doi.org/10.1007/s10439-006-9195-4

Zhao K, Scherer PW, Hajiloo SA, Dalton P. Effects of anatomy on human nasal air flow and odorant transport patterns: Implictions for olfaction. Chem Senses 2004; 29(5): 365-79. http://dx.doi.org/10.1093/chemse/bjh033

Keyhani K, Schere, PW, Mozell MM. A numerical model of nasal odorant transport for the analysis of human olfaction. J Theoretical Biol 1997; 186(3): 279-301. http://dx.doi.org/10.1006/jtbi.1996.0347

Tian G, Longest PW. Application of a new dosimetry program TAOCS to assess transient vapour absorption in the upper airways. Inhalation Toxicol 2010; 22(13): 1047-63. http://dx.doi.org/10.3109/08958378.2010.521783

Tian G, Longest PW. Development of a CFD Boundary Condition to Model Transient Vapor Absorption in the Respiratory Airways. J Biomech Eng-Trans Asme 2010; 132(5).

Tian G, Longest PW, Su G, Hindle M. Characterization of Respiratory Drug Delivery with Enhanced Condensational Growth using an Individual Path Model of the Entire Tracheobronchial Airways. Annals Biomed Eng 2011; 39(3): 1136-53. http://dx.doi.org/10.1007/s10439-010-0223-z

Xi J, Longest PW. Transport and deposition of microaerosols in realistic and simplified models of the oral airway. Annals Biomed Eng 2007; 35(4): 560-81. http://dx.doi.org/10.1007/s10439-006-9245-y

Cheng KH, Cheng YS, Yeh HC, Swift DL. Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage. J Biomech Eng 1997; 119: 476-82. http://dx.doi.org/10.1115/1.2798296

Yeh HC, Schum GM. Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol 1980;42: 461-80.

ICRP. Human Respiratory Tract Model for Radiological Protection, Elsevier Science Ltd, New York 1994.

Cohen BS, Sussman RG, Lippmann M. Ultrafine particle deposition in a human tracheobronchial cast. Aerosol Sci Technol 1990; 12: 1082-93. http://dx.doi.org/10.1080/02786829008959418

Russo J, Robinson R, Oldham MJ. Effects of cartilage rings on airflow and particle deposition in the trachea and main bronchi. Med Eng Phys 2008; 30: 581-89. http://dx.doi.org/10.1016/j.medengphy.2007.06.010

Horsfield K, Dart G, Olson DE, Cumming G. Models of the human bronchial tree. J Appl Physiol 1971; 31: 207-17.

Hammersley JR, Olson DE. Physical models of the smaller pulmonary airways. J Appl Physiol 1992; 72: 2402-14.

Heistracher T, Hofmann W. Physiologically realistic models of bronchial airway bifurcations. J Aerosol Sci 1995; 26(3): 497-509. http://dx.doi.org/10.1016/0021-8502(94)00113-D

Ghalichi F, Deng X, Champlain AD, Douville Y, King M, Guidoin R. Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology 1998; 35(4&5): 281-94. http://dx.doi.org/10.1016/S0006-355X(99)80011-0

Wilcox DC. Turbulence Modeling for CFD, 2nd ed, DCW Industries, Inc, California 1998.

Zhang Z, Kleinstreuer C. Low-Reynolds-number turbulent flows in locally constricted conduits: A comparison study. AIAA J 2003; 41(5): 831-40. http://dx.doi.org/10.2514/2.2044

Zhang Z, Kleinstreuer C. Airflow structures and nano-particle deposition in a human upper airway model. J Comput Phys 2004; 198(1): 178-10. http://dx.doi.org/10.1016/j.jcp.2003.11.034

Longest PW, Vinchurkar S. Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. J Biomech 2006; (in press).

Allen MD, Raabe OG. Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci Technol 1985; 4: 269-86. http://dx.doi.org/10.1080/02786828508959055

Cheng YS, Zhou Y, Chen BT. Particle deposition in a cast of human oral airways. Aerosol Sci Technol 1999; 31: 286-300. http://dx.doi.org/10.1080/027868299304165

Balashazy I, Hofmann W. Particle deposition in airway bifurcations-I. Inspiratory flow. J Aerosol Sci 1993; 24: 745- 72. http://dx.doi.org/10.1016/0021-8502(93)90044-A

Martonen TB, Guan X, Schreck RM. Fluid dynamics in airway bifurcations: I. Primary flows. Inhalation Toxicol 2001; 13(4): 261-79. http://dx.doi.org/10.1080/089583701750127359

Zhang Z, Kleinstreuer C. Effect of particle inlet distributions on deposition in a triple bifurcation lung airway model. J Aerosol Med-Deposit Clearance Effects Lung 2001; 14(1): 13-29. http://dx.doi.org/10.1089/08942680152007864

Zhang Z, Kleinstreuer C, Kim CS. Flow structure and particle transport in a triple bifurcation airway model. J Fluids EngTrans ASME 2001; 123(2): 320-30. http://dx.doi.org/10.1115/1.1359525

Tovbin YK, Rahinovich AB. Self-diffusion, mass transfer, and viscosity coefficients for a binary mixture in narrow slit-like pores. Russian Chem Bull 2005; 54(8): 1777-86. http://dx.doi.org/10.1007/s11172-006-0036-2

Pritchard DT, Currie JA. Diffusion of coefficients of carbon dioxide, nitrous oxide, ethylene and ethane in air and their measurement. J Soil Sci 1982; 33(2): 175-84. http://dx.doi.org/10.1111/j.1365-2389.1982.tb01757.x

Longest PW, Xi J. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci Technol 2007; 41: 380-97. http://dx.doi.org/10.1080/02786820701203223

Matida EA, Finlay WH, Grgic LB. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. J Aerosol Sci 2004; 35: 1-19. http://dx.doi.org/10.1016/S0021-8502(03)00381-1

Xi J, Longest PW. Effects of improved near-wall modeling on micro-particle deposition in oral airway geometries. Proceedings of the 2007 ASME Summer Bioengineering Conference, Keystone, CO. 2007; Paper No. SBC2007- 176227.

Corcoran TE, Chigier N. Inertial deposition effects: A study of aerosol mechanics in the trachea using laser doppler velocity and fluorescent dye. J Biomech Eng 2002; 124: 629-37. http://dx.doi.org/10.1115/1.1516572

Pelorson X, Hirschberg A, van Hassel RR, Wijnands APJ, Auregan Y. Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model. J Acoust Soc Am 1994; 96: 3416-31. http://dx.doi.org/10.1121/1.411449

Scherer RC, Titze IR, Curtis JF. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. J Acoust Soc Am 2001; 109: 1616-30. http://dx.doi.org/10.1121/1.1333420

Asgharian B, Anjilvel S. A Monte Carlo calculation of the deposition efficiency of inhaled particles in lower airways. J Aerosol Sci 1994; 25(4): 711-21. http://dx.doi.org/10.1016/0021-8502(94)90012-4

Zhang Z, Kleinstreuer C, Kim CS. Airflow and Nanoparticle Deposition in a 16-Generation Tracheobronchial Airway Model. Annals Biomed Eng 2008; 36(12): 2095-10. http://dx.doi.org/10.1007/s10439-008-9583-z

WebBook, N.C, 2008; http://webbook.nist.gov/chemistry/."

Kim J, Xi J, Si X, Berlinski A, Su WC. Hood Nebulization: Effects of Head Direction and Breathing Mode on Particle Inhalability and Deposition in a 7-Month-Old Infant Model. Journal of aerosol medicine and pulmonary drug delivery, 2013; in press.

Xi J, Kim J, Si XA, Zhou Y. Diagnosing Obstructive Respiratory Diseases using Exhaled Aerosol Fingerprints: A Feasibility Study. J Aerosol Sci 2013. http://dx.doi.org/10.1016/j.jaerosci.2013.06.003

Xi J, Kim J, Si XA, Zhou Y. Hygroscopic aerosol deposition in the human upper respiratory tract under various thermohumidity conditions. J Environ Sci Health Part A 2013; 48(14): 1790-805. http://dx.doi.org/10.1080/10934529.2013.823333

Xi J, Si X, Zhou Y, Kim J, Berlinski A. Growth of NasalLaryngeal Airways in Children and Their Implications in Breathing and Inhaled Aerosol Dynamics. Respiratory Care 2013; in press.

Lumb AB. Nunn's Applied Respiratory Physiology, Butterworth Heinemann, Oxford 2000.

Downloads

Published

2013-11-27

Issue

Section

Articles