Artificial Intelligence cannot Replace Human Skill at Embryo Transfer

Authors

  • Gautam N Allahbadia MMC IVF, Dubai, UAE; Rotunda-Center for Human Reproduction, Mumbai, India
  • Swati G Allahbadia Rotunda-Center for Human Reproduction, Mumbai, India
  • Akanksha Gupta Sumitra Hospital, NOIDA, India

Keywords:

Deep Machine Learning, Embryo Transfer, IVF, Ultrasound, Algorithm, Embryo, Artificial Intelligence

Abstract

: Sixteen artificial intelligence (AI) and machine learning (ML) papers were presented at the 2018 Annual meetings of the American Society for Reproductive Medicine (Nine) and European Society for Human Reproduction and Embryology (Seven). Nearly every aspect of an IVF cycle was investigated, including sperm morphology, sperm identification, identification of empty or oocyte containing follicles, prediction of embryo cell stages, prediction of blastulation from oocytes, scoring blastocyst quality, prediction of euploid blastocysts and live birth from blastocysts, improving the embryo selection process, and for developing algorithms for optimal IVF stimulation protocols. Moreover, AI-based methods can be implemented for other clinical aspects of IVF, such as assessing patient reproductive potential and individualizing gonadotropin stimulation protocols. As AI has the capability to analyze "big" data, the ultimate goal will be to apply AI tools to the analysis of all embryological, clinical, and genetic data in an effort to provide patient-tailored treatments. Embryo Transfer is the only step of IVF that is outside the realm of AI & ML. Embryo Transfer success is presently human skill dependent and deep machine learning may one day intrude into this sacred space with the advent of specialized humanoid robots. Embryo transfer is arguably the rate limiting step in the sequential events that complete an IVF cycle. Many variables play a role in the success of embryo transfer, including catheter type, atraumatic technique, and the use of sonography guidance. In this clinical review we will cover the contemporary research goals of AI & ML as well as the variables influencing Embryo Transfer success.

References

Curchoe CL(1), Bormann CL(2). Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018.J Assist Reprod Genet. 2019 Apr;36(4):591-600. https://doi.org/10.1007/s10815-019-01408-x

Lundin K(1), Park H(1).Time-lapse technology for embryo culture and selection. Ups J Med Sci. 2020 May;125(2):77-84. https://doi.org/10.1080/03009734.2020.172844 4

Allahbadia GN. Ultrasonography-guided embryo transfer: evidence-based practice. In: Rizk BRMB (Ed). Ultrasonography in Reproductive Medicine and Infertility, ed. Cambridge University Press. © Cambridge University Press 2010. https://doi.org/10.1017/cbo9780511776854.03 0

Allahbadia GN, Kadam K, Gandhi G, et al. Embryo transfer using the SureView catheterbeacon in the womb. Fertil Steril. 2010;93(2):344-50. https://doi.org/10.1016/j.fertnstert.2009.01.090

Allahbadia GN. Embryo Transfer. New Delhi: Jaypee Brothers Medical Publishers; 2008. p: 558.

Kava-Braverman A(1), Martínez F(2), Rodríguez I(2), Álvarez M(2), Barri PN(2), Coroleu B(2). What is a difficult transfer? Analysis of 7,714 embryo transfers: the impact of maneuvers during embryo transfers on pregnancy rate and a proposal of objective assessment. Fertil Steril. 2017 Mar;107(3):657-663.e1. https://doi.org/10.1016/j.fertnstert.2016.11.020

McQueen DB(1), Robins JC(2), Yeh C(3), Zhang JX(2), Feinberg EC(2). Embryo transfer training in fellowship: national and institutional data.Fertil Steril. 2020 Nov;114(5):1006-1013. https://doi.org/10.1016/j.fertnstert.2020.06.004

Ramaiah SD(1), Ray KA(1), Reindollar RH(2). Simulation training for embryo transfer: findings from the American Society for Reproductive Medicine Embryo Transfer Certificate Course. Fertil Steril. 2021 Apr;115(4):852-859. https://doi.org/10.1016/j.fertnstert.2020.10.056

Wang Y(1), Zhu Y(1), Sun Y(2), Di W(3), Qiu M(1), Kuang Y(1), Shen H(4). Ideal embryo transfer position and endometrial thickness in IVF embryo transfer treatment. Int J Gynaecol Obstet. 2018 Dec;143(3):282-288. https://doi.org/10.1002/ijgo.12681

Davar R(1), Poormoosavi SM(2), Mohseni F(1), Janati S(3). Effect of embryo transfer depth on IVF/ICSI outcomes: A randomized clinical trial. Int J Reprod Biomed. 2020 Sep 20;18(9):723-732. https://doi.org/10.18502/ijrm.v13i9.7667

Pacchiarotti A(1), Mohamed MA, Micara G, Tranquilli D, Linari A, Espinola SM, Aragona C. The impact of the depth of embryo replacement on IVF outcome. J Assist Reprod Genet. 2007 May;24(5):189-93. https://doi.org/10.1007/s10815-007-9110-4

Santos MMD(1), Silva AA(1), Barbosa ACP(1), Brum G(1), Nakagawa HM(1), Cabral I(1), Iglesias JR(1), Barbosa MWP(1). Embryo placement in IVF and reproductive outcomes: a cohort analysis and review. JBRA Assist Reprod. 2019 Aug 22;23(3):210-214. https://doi.org/10.5935/1518-0557.20190003

Ivanovski M(1), Damcevski N, Radevska B, Doicev G. The influence of the depth of embryo replacement into the uterine cavity on in vitro fertilization outcome.Akush Ginekol (Sofiia). 2012;51(3):59-67.

Caanen MR(1), van der Houwen LE, Schats R, Vergouw CG, de Leeuw B, Lambers MJ, Groeneveld E, Lambalk CB, Hompes PG. Embryo Transfer with Controlled Injection Speed to Increase Pregnancy Rates: A Randomized Controlled Trial. Gynecol Obstet Invest. 2016;81(5):394-404. https://doi.org/10.1159/000443954

Mo J(1), Yang Q(1), Xia L(2), Niu Z(2). Embryo location in the uterus during embryo transfer: An in vitro simulation. PLoS One. 2020 Oct 5;15(10):e0240142. https://doi.org/10.1371/journal.pone.0240142

Bakas P(1), Simopoulou M(2), Giner M(2), Tzanakaki D(2), Deligeoroglou E(2). Accuracy and efficacy of embryo transfer based on the previous measurement of cervical length and total uterine length. Arch Gynecol Obstet. 2019 Feb;299(2):565-570. https://doi.org/10.1007/s00404-018-4971-6

Omidi M(1), Halvaei I(1), Mangoli E(1), Khalili MA(1), Razi MH(1). The effect of embryo catheter loading technique on the live birth rate. Clin Exp Reprod Med. 2015 Dec;42(4):175-80. https://doi.org/10.5653/cerm.2015.42.4.175

Lindsay Mains, Van Voorhis BJ. Optimizing the technique of embryo transfer. Fert Stert. 2010;94(3):785-90. https://doi.org/10.1016/j.fertnstert.2010.03.030

Levi Setti PE(1)(2)(3), Cirillo F(1), Morenghi E(4), Immediata V(1), Caccavari V(1)(5), Baggiani A(1), Albani E(1), Patrizio P(2). One step further: randomised single-centre trial comparing the direct and afterload techniques of embryo transfer. Hum Reprod. 2021 Aug 18;36(9):2484-2492. https://doi.org/10.1093/humrep/deab178

Lee HC, Seifer DB, Shelden RM. Impact of retained embryos on the outcome of assisted reproductive technologies. Fertil Steril. 2004;82(2):334-7. https://doi.org/10.1016/j.fertnstert.2004.01.035

Oraif A, Hollet-Caines J, Feyles V, et al. Do multiple attempts at embryo transfer affect clinical pregnancy rates? J Obstet Gynaecol Can. 2014;36(5):406-7. https://doi.org/10.1016/s1701-2163(15)30586- 7

Kozikowska M(1), Grusza M(1), Mrugacz G(1), Gagan J(2), Zbucka-Krętowska M(3), Grygoruk C(4). The Influence Of Intrauterine Pressure On Embryo Retention In A Catheter After Embryo Transfer. Sci Rep. 2019 Aug 19;9(1):11969. https://doi.org/10.1038/s41598-019-48077-5

Ruhlmann C(1), Gnocchi DC(1), Cattaneo AR(1), Molina LG(1), Rivadeneira LR(1), Tessari L(1), Martínez AG(1). Embryo Transfer Catheters: Softer is Easier. JBRA Assist Reprod. 2015 Nov 1;19(4):204-9. https://doi.org/10.5935/1518-0557.20150040

Abou-Setta AM, Al-Inany HG, Mansour RT, et al. Soft versus firm embryo transfer catheters for assisted reproduction: a systematic review and meta-analysis. Hum Reprod. 2005;20(11):3114-21. Ebner T, Yaman C et al. The ineffective loading process of the embryo transfer catheter alters implantation and pregnancy rates. Ferti Steril 2001;76:630-2. https://doi.org/10.1093/humrep/dei198

De Placido G, Wilding M, Stina I, et al. The effect of ease of transfer and type of catheter used on pregnancy and implantation rates in an IVF program. J Assist Reprod Genet. 2002;19(1):14-8.

Eftekhar M(1), Saeed L(1)(2), Hoseini M(1). The effect of catheter rotation during its withdrawal on frozen thawed embryo-transfer cycles outcomes: A Case-control study. Int J Reprod Biomed. 2019 Jul 31;17(7):481-486. https://doi.org/10.18502/ijrm.v17i7.4859

Macklon N(1), Delikari O(2), Lamanna G(2), Campbell A(3), Fishel S(4), Laiseca ZL(5), Serrano MF(5), Coat C(6), Svalander P(7). Embryos are exposed to a significant drop in temperature during the embryo transfer procedure: a pilot study. Reprod Biomed Online. 2021 Aug;43(2):193-195. https://doi.org/10.1016/j.rbmo.2021.05.014

Curchoe CL(1), Malmsten J(2), Bormann C(3), Shafiee H(4), Flores-Saiffe Farias A(5), Mendizabal G(6), Chavez-Badiola A(7), Sigaras A(8), Alshubbar H(9), Chambost J(10), Jacques C(10), Pena CA(10), Drakeley A(11), Freour T(12), Hajirasouliha I(13), Hickman CFL(14), Elemento O(13), Zaninovic N(2), Rosenwaks Z(2).Predictive modeling in reproductive medicine: Where will the future of artificial intelligence research take us?Fertil Steril. 2020 Nov;114(5):934-940. https://doi.org/10.1016/j.fertnstert.2020.10.040

Louis CM(1), Erwin A(2)(3), Handayani N(2)(4), Polim AA(2)(4)(5), Boediono A(2)(4)(6), Sini I(2)(4). Review of computer vision application in in vitro fertilization: the application of deep learning-based computer vision technology in the world of IVF. J Assist Reprod Genet. 2021 Jul;38(7):1627-1639. https://doi.org/10.1007/s10815-021-02123-2

Curchoe CL(1), Flores-Saiffe Farias A(2), Mendizabal-Ruiz G(3), Chavez-Badiola A(4). Evaluating predictive models in reproductive medicine. Fertil Steril. 2020 Nov;114(5):921- 926. https://doi.org/10.1016/j.fertnstert.2020.09.159

Pedrosa ML(1)(2), Furtado MH(1), Ferreira MCF(1)(2), Carneiro MM(1)(2). Sperm selection in IVF: the long and winding road from bench to bedside. JBRA Assist Reprod. 2020 Jul 14;24(3):332-339. https://doi.org/10.5935/1518-0557.20190081

Kresch E(1), Efimenko I(1), Gonzalez D(1), Rizk PJ(1), Ramasamy R(1). Novel methods to enhance surgical sperm retrieval: a systematic review. Arab J Urol. 2021 May 18;19(3):227- 237. https://doi.org/10.1080/2090598x.2021.192675 2

Letterie G(1), Mac Donald A(2). Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization. Fertil Steril. 2020 Nov;114(5):1026-1031. https://doi.org/10.1016/j.fertnstert.2020.06.006

Siristatidis C(1), Vogiatzi P(2), Pouliakis A(3), Trivella M(4), Papantoniou N(5), Bettocchi S(6). Predicting IVF Outcome: A Proposed Web-based System Using Artificial Intelligence.In Vivo. 2016 Jul-Aug;30(4):507- 12.

Letterie G(1), MacDonald A(2), Shi Z(3). An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions. Reprod Biomed Online. 2022 Feb;44(2):254-260. https://doi.org/10.1016/j.rbmo.2021.10.006

Mehrjerd A(1)(2), Rezaei H(2), Eslami S(1)(3), Khadem Ghaebi N(1). Determination of Cut Off for Endometrial Thickness in Couples with Unexplained Infertility: Trustable AI. Stud Health Technol Inform. 2022 May 25;294:264- 268. https://doi.org/10.3233/shti220450

Ruiz-Alonso M(1)(2), Valbuena D(1)(2), Gomez C(2), Cuzzi J(3), Simon C(1)(4)(5). Endometrial Receptivity Analysis (ERA): data versus opinions. Hum Reprod Open. 2021 Apr 14;2021(2):hoab011. https://doi.org/10.1093/hropen/hoab011

Chen Z(1)(2), Wang Z(1), Du M(2), Liu Z(1). Artificial Intelligence in the Assessment of Female Reproductive Function Using Ultrasound: A Review.J Ultrasound Med. 2022 Jun;41(6):1343-1353. https://doi.org/10.1002/jum.15827

Coticchio G(1), Fiorentino G(2), Nicora G(3), Sciajno R(4), Cavalera F(5), Bellazzi R(3), Garagna S(2), Borini A(4), Zuccotti M(6). Cytoplasmic movements of the early human embryo: imaging and artificial intelligence to predict blastocyst development. Reprod Biomed Online. 2021 Mar;42(3):521-528. https://doi.org/10.1016/j.rbmo.2020.12.008

Chavez-Badiola A(1), Flores-Saiffe Farias A(2), Mendizabal-Ruiz G(3), Garcia-Sanchez R(2), Drakeley AJ(4), Garcia-Sandoval JP(5). Predicting pregnancy test results after embryo transfer by image feature extraction and analysis using machine learning. Sci Rep. 2020 Mar 10;10(1):4394. https://doi.org/10.1038/s41598-020-61357-9

Loewke K(1), Cho JH(2), Brumar CD(2), Maeder-York P(2), Barash O(3), Malmsten JE(4), Zaninovic N(4), Sakkas D(5), Miller KA(6), Levy M(7), VerMilyea MD(8). Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos. Fertil Steril. 2022 Mar;117(3):528-535. doi: 10.1016/j.fertnstert.2021.11.022. Epub 2022 Jan 5. https://doi.org/10.1016/j.fertnstert.2021.11.022

VerMilyea M(1)(2), Hall JMM(3)(4), Diakiw SM(3), Johnston A(3)(5), Nguyen T(3), Perugini D(3), Miller A(1), Picou A(1), Murphy AP(3), Perugini M(3)(6). Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020 Apr 28;35(4):770-784. https://doi.org/10.1093/humrep/deaa013

Diakiw SM(1), Hall JMM(1)(2)(3), VerMilyea MD(4)(5), Amin J(6), Aizpurua J(7), Giardini L(7), Briones YG(7), Lim AYX(8), Dakka MA(1), Nguyen TV(1), Perugini D(1), Perugini M(1)(9). Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Hum Reprod. 2022 Jul 30;37(8):1746-1759. https://doi.org/10.1093/humrep/deac131

Huang B(1), Tan W(1), Li Z(2), Jin L(3). An artificial intelligence model (euploid prediction algorithm) can predict embryo ploidy status based on time-lapse data. Reprod Biol Endocrinol. 2021 Dec 13;19(1):185. https://doi.org/10.1186/s12958-021-00864-4

Sawada Y(1), Sato T(2), Nagaya M(3), Saito C(1), Yoshihara H(1), Banno C(1), Matsumoto Y(1), Matsuda Y(4), Yoshikai K(4), Sawada T(4), Ukita N(3), Sugiura-Ogasawara M(1). Evaluation of artificial intelligence using timelapse images of IVF embryos to predict live birth. Reprod Biomed Online. 2021 Nov;43(5):843-852. https://doi.org/10.1016/j.rbmo.2021.05.002

Berntsen J(1), Rimestad J(1), Lassen JT(1), Tran D(2), Kragh MF(1)(3). Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences. PLoS One. 2022 Feb 2;17(2):e0262661. https://doi.org/10.1371/journal.pone.0262661

Bori L(1), Dominguez F(2), Fernandez EI(3), Del Gallego R(4), Alegre L(1), Hickman C(5), Quiñonero A(4), Nogueira MFG(3), Rocha JC(3), Meseguer M(6). An artificial intelligence model based on the proteomic profile of euploid embryos and blastocyst morphology: a preliminary study. Reprod Biomed Online. 2021 Feb;42(2):340-350. https://doi.org/10.1016/j.rbmo.2020.09.031

Tran D(1), Cooke S(2), Illingworth PJ(2), Gardner DK(3). Deep learning as a predictive tool for fetal heart pregnancy following timelapse incubation and blastocyst transfer. Hum Reprod. 2019 Jun 4;34(6):1011-1018. https://doi.org/10.1093/humrep/dez064

Ferrick L(1), Lee YSL(2), Gardner DK(1)(2). Metabolic activity of human blastocysts correlates with their morphokinetics, morphological grade, KIDScore and artificial intelligence ranking. Hum Reprod. 2020 Sep 1;35(9):2004-2016. https://doi.org/10.1093/humrep/deaa181

Dimitriadis I(1), Zaninovic N(2), Badiola AC(3), Bormann CL(4). Artificial intelligence in the embryology laboratory: a review. Reprod Biomed Online. 2022 Mar;44(3):435-448. https://doi.org/10.1016/j.rbmo.2021.11.003

Zaninovic N(1), Rosenwaks Z(2). Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril. 2020 Nov;114(5):914- 920. https://doi.org/10.1016/j.fertnstert.2020.09.157

Siristatidis C(1)(2), Stavros S(3), Drakeley A(4), Bettocchi S(5), Pouliakis A(6), Drakakis P(3), Papapanou M(1), Vlahos N(1)(2). Omics and Artificial Intelligence to Improve In Vitro Fertilization (IVF) Success: A Proposed Protocol.Diagnostics (Basel). 2021 Apr 21;11(5):743. https://doi.org/10.3390/diagnostics11050743

Manna C(1), Nanni L, Lumini A, Pappalardo S. Artificial intelligence techniques for embryo and oocyte classification. Reprod Biomed Online. 2013 Jan;26(1):42-9. https://doi.org/10.1016/j.rbmo.2012.09.015

Siristatidis C(1), Pouliakis A, Chrelias C, Kassanos D. Artificial intelligence in IVF: a need. Syst Biol Reprod Med. 2011 Aug;57(4):179-85. https://doi.org/10.3109/19396368.2011.558607

Trolice MP(1)(2), Curchoe C(3), Quaas AM(4)(5). Artificial intelligence-the future is now. J Assist Reprod Genet. 2021 Jul;38(7):1607-1612. https://doi.org/10.1007/s10815-021-02272-4

Chow DJX(1)(2)(3), Wijesinghe P(4), Dholakia K(3)(4)(5)(6), Dunning KR(1)(2)(3). Does artificial intelligence have a role in the IVF clinic? Reprod Fertil. 2021 Aug 23;2(3):C29- C34. https://doi.org/10.1530/raf-21-0043

Kragh MF(1)(2), Karstoft H(3). Embryo selection with artificial intelligence: how to evaluate and compare methods? J Assist Reprod Genet. 2021 Jul;38(7):1675-1689. https://doi.org/10.1007/s10815-021-02254-6

Doody KJ(1). Infertility Treatment Now and in the Future. Obstet Gynecol Clin North Am. 2021 Dec;48(4):801-812. https://doi.org/10.1016/j.ogc.2021.07.005

Simopoulou M(1)(2), Sfakianoudis K(3), Maziotis E(4), Antoniou N(4), Rapani A(4), Anifandis G(5), Bakas P(6), Bolaris S(7), Pantou A(3), Pantos K(3), Koutsilieris M(4). Are computational applications the "crystal ball" in the IVF laboratory? The evolution from mathematics to artificial intelligence. J Assist Reprod Genet. 2018 Sep;35(9):1545-1557. https://doi.org/10.1007/s10815-018-1266-6

Matorras R(1)(2), Valls R(3), Azkargorta M(4), Burgos J(5), Rabanal A(1), Elortza F(4), Mas JM(3), Sardon T(3). Proteomics based drug repositioning applied to improve in vitro fertilization implantation: an artificial intelligence model. Syst Biol Reprod Med. 2021 Aug;67(4):281-297. https://doi.org/10.1080/19396368.2021.192879 2

Molina M(1), Ramasamy R(1),Geller J(1), Collazo I(2), Pai R(1), Hendon N(2), Lokeshwar SD(3), Arora H(1). An Artificial Intelligence-Based Algorithm for Predicting Pregnancy Success Using Static Images Captured by Optical Light Microscopy during Intracytoplasmic Sperm Injection. J Hum Reprod Sci. 2021 Jul-Sep;14(3):288-292. https://doi.org/10.4103/jhrs.jhrs_53_21

Fernandez EI(1), Ferreira AS(1), Cecílio MHM(1), Chéles DS(1)(2), de Souza RCM(1), Nogueira MFG(2), Rocha JC(3)(4).Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data.J Assist Reprod Genet. 2020 Oct;37(10):2359-2376. https://doi.org/10.1007/s10815-020-01881-9

Published

2022-12-25

Issue

Section

Articles