Crisis Detection in the Age of Digital Communication: The Power of Social Listening as a Method to Identify Corporate Events in Time Series Data
DOI:
https://doi.org/10.31907/2617-121X.2022.05.01.2Keywords:
Outliers, Social Listening, Crisis Detection, Econometrics, Time Series, Reputation Management, Digital Media, Artificial Intelligence (AI)Abstract
The increased usage of digital media to exchange information has increased the speed in which corporate crises become known. This has increased the necessity to react to a crisis as quickly as possible. As a result, social listening – i.e. listening to and analysing digital communication – is establishing itself as an instrument for companies to control their own representation in the media. Against this background, different methodological approaches in crisis detection (e.g. outlier detection, t-test and Chow test) were tested regarding their quality. For that, we used a data set created by an AI crawling online sources and analysing the results using a neural network. The findings of this study suggest that crises can be identified quite reliably using existing econometric methods. A simple outlier detection in a time series of the total number of fragments that uses a time frame of one month on each side of a crisis seems to be the best method so far with the method by Chen and Liu being a close second. The results of this study provide a foundational contribution to this field of research and can help companies detect crises as early as possible allowing the management to react appropriately.
References
Alharbi, A. & Lee, M. (2019). Crisis detection from Arabic tweets. In M. El-Haj, P. Rayson, E. Atwell & L. Alsudias (Eds.), Proceedings of the 3rd Workshop on Arabic Corpus Linguistics (pp. 72-79). Association for Computational Linguistics.
Alsaedi, N., Burnap, P. & Rana, O. (2017). Can we predict a riot? Disruptive event detection using Twitter. ACM Transactions on Internet Technology, 17(2), Article 18.
https://doi.org/10.1145/2996183
Anggriyani, B. (2023). Crisis Management Strategies in Corporate Communication Studies. American Journal of Humanities and Social Sciences Research (AJHSSR), 7(3), 93-
Asiminidis, C. & Asiminidou, S. (2023). Social Media Communicating Crisis Management and Users’ Interactions. International Journal of
Innovative Science, Engineering & Technology, 10(5).
Avvenutti, M., Cresci, S., Del Vigna, F., Fagni, T. & Tesconi, M. (2018). CrisMap: a big data crisis mapping system based on damage detection and geoparsing. Information Systems Frontiers, 20(5), 993-1011. https://doi.org/10.1007/s10796-018-9833-z
Avvenutti, M., Cresci, S., Marchetti, A., Meletti, C. & Tesconi, M. (2014). EARS (Earthquake Alert and Report System): a real time decision support system for earthquake crisis management. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1749-1758). Association for Computing Machinery.
https://doi.org/10.1145/2623330.2623358
Bai, J. & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1-22. https://doi.org/10.1002/jae.659
Bhuvaneswari, A., Jayanthi, R. & Meena, A. L. (2021). Improving crisis event detection rate in online social networks Twitter stream using Apache Spark. Journal of Physics: Conference Series, 1950 (1), Article 012077. https://doi.org/10.1088/1742- 6596/1950/1/012077
Borden, J., Zhang, X. A. & Hwang, J. (2020). Improving automated crisis detection via an improved understanding of crisis language: linguistic categories in social media crises.
Jour-nal of Contingencies and Crisis Management, 28(3), 281-290. https://doi.org/10.1111/1468-5973.12308
Burel, G., Saif, H., Fernandez, M. and Alani, H. (2017). On semantics and deep learning for event detection in crisis situations. Workshop on Semantic Deep Learning (SemDeep1@ESWC) (pp. 1-12). Knowledge Media Institute.
Chen, C. & Liu, L.-M. (1993). Joint estimation of model parameters and outlier effects in time series. Journal of the American Statistical Association, 88(421), 284-297.
https://doi.org/10.1080/01621459.1993.105943 2
Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Eco-nometrica, 28(3), 591-605. https://doi.org/10.2307/1910133
Ebina, R., Nakamura, K. & Oyanagi, S. (2013). A real-time burst analysis method. International Journal on Artificial Intelligence Tools, 22(5), Article 136009.
https://doi.org/10.1142/s0218213013600099
Fahrmeir, L., Heumann, C., Künstler, R., Pigeot, I. & Tutz, G. (2016). Statistik: Der Weg zur Datenanalyse (8th ed.). Springer Nature. https://doi.org/10.1007/978-3-662-50372-0
Fahrun, J. (2018, September 6). Fertiges Regierungsterminal am BER wartet auf Staatsgäste. Berliner Morgenpost. [16] Fombrun, C. J. & Van Riel, C. B. M. (2004).
Fame & fortune: how successful companies build winning reputations. Pearson Education.
Forthmann, J., Westermann, A. & Homann, R. (2020). The swing effects of CSR between society and company. In D. Verčič, A. K. Verčič & K. Sriramesh (Eds.), Proceedings of the 27th International Public Relations Research Symposium BledCom (pp. 159-180). University of Ljubljana.
Holsapple, C., Hsiao, S.-H. & Pakath, R. (2018). Business social media analytics: characterization and conceptual framework. Decision Support Systems, 10, 35-42.
https://doi.org/10.1016/j.dss.2018.03.004
Ibrahim, A., Hassaballah, M., Ali, A., Nam, Y. & Ibrahim, I. (2022) COVID19 Outbreak: A Hierarchical Framework for User Sentiment Analysis. Computers, Materials & Continua,
(2), 2507-2524. https://doi.org/10.32604/cmc.2022.018131
Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7(4), 373-397. https://doi.org/10.1023/a:1024940629314
Marcus, A., Bernstein, M. S., Badar, O. Karger, D. R., Madden, S. & Miller, R. C. (2011). TwitInfo: aggregating and visualizing microblogs for event exploration. Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (pp. 227-236). Association for Computing Machinery. https://doi.org/10.1145/1978942.1978975
Melpomeni, A. & Siegel, M. (2021). Kernfunktionalitäten der Social-ListeningWerkzeuge. In A. Melpomeni & M. Siegel (Eds.), Tools für Social Listening und
Sentiment-Analyse (pp. 53-81). Springer Nature. https://doi.org/10.1007/978-3-658-33468-0_4
Oh, K. J., Kim, T. Y. & Kim, C. (2006a). An early warning system for detection of financial crisis using financial market volatility. Expert Systems, 23(2), 83-98.
https://doi.org/10.1111/j.1468- 0394.2006.00326.x
Oh, K. J., Kim, T. Y., Kim, C. & Lee, S. J.(2006b). Using neural networks to tune the fluctuation of daily financial condition indicator for financial crisis forecasting. In A. Sattar & B.-H. Kang (Eds.), AI 2006: Advances in Artificial Intelligence (pp. 607-616). Springer Science+Business Media. https://doi.org/10.1007/11941439_65
Pohl, D., Bouchachia, A. & Hellwanger, H. (2015). Social media for crisis management: clustering approaches for sub-event detection. Multimedia Tools and Applications, 74(11), 3901-3932. https://link.springer.com/article/10.1007/s1104 2-013-1804-2
Ramakrishnan, N., Butler, P., Muthiah, S., Self, N., Khandpur, R., Saraf, P., Wang, W., Cadena, J., Vullikanti, A., Korkmaz, G., Kuhlman, C.,
Marathe, A., Zhao, L., Hua, T., Chen, F., Lu, C.- T., Huang, B., Srinivasan, A., Khoa, T., Getoor, L., Katz, G., Doyle, A., Ackermann, C., Zavorin,
I., Ford, J., Summers, K., Fayed, Y., Arredondo, J., Gupta, D. & Mares, D. (2014). Beating the news with EMBERS: forecasting civil unrest using open source indicators. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1799-1808). Association for Computing Machinery. https://doi.org/10.1145/2623330.2623373
Sakaki, T., Okazaki, M. & Matsuo, Y. (2010). Earthquake shakes Twitter users: real-time event detection by social sensors. Proceedings of the 19th International Conference on World Wide Web (pp. 851-860). Association for Computing Machinery. https://doi.org/10.1145/1772690.1772777
Singla, C., Al-Wesabi, F., Pathania, Y., Alfurhood, B. Hilal, A., Rizwanullah, M. Hamza, M. & Mahzari, M. (2022). An Optimized Deep Learning Model for Emotion Classification in Tweets. Computers, Materials & Continua, 70(3), 6365-6380. https://doi.org/10.32604/cmc.2022.020480
Stewart, M. C. & Arnold, C. L. (2018). Defining social listening: recognizing an emerging dimension of listening. International Journal of Listening, 32(2), 85-100.
https://doi.org/10.1080/10904018.2017.133065 6
Taher, S. & Chan, T. (2023). Case Study of Sriwijaya Air Crash from the Lens of Crisis Communication and Management. Journal of
Arts & Social Sciences, 6(2), 1- 10.
Telghelder, M. (2019, October 31). Kliniken in der Krise: Malteser wollen Krankenhäuser verkaufen. Handelsblatt. https://www.handelsblatt.com/unternehmen/die
nstleister/gesundheit-kliniken-in-der-krisemalteser-wollen-krankenhaeuserverkaufen/25173912.html?ticket=ST-4914702- CQnfrukP3YSuRkVCcUbH-ap5
Turban, E., Outland, J., King, D., Lee, J. K., Liang, T.-P. & Turban, D. C. (2018). Electronic Commerce 2018: A Managerial and Social Networks Perspective (9th ed.). Springer
International Publishing. https://doi.org/10.1007/978-3-319-58715-8
Weiß, C. (2010). Basiswissen Medizinische Statistik (5th ed.). Springer Medizin Verlag. https://doi.org/10.1007/978-3-642-11337-6
Westermann, A. & Forthmann, J. (2021). Social listening: a potential game changer in reputation management – How big data analysis can
contribute to understanding stakeholders’ views on organisations. Corporate Communications: An International Journal, 26(1), 2-22. https://doi.org/10.1108/ccij-01-2020-0028
Xie, W., Zhu, F., Jiang, J., Lim, E. P. & Wang, K. (2016). TopicSketch: real-time bursty topic detection from Twitter. IEEE Transactions on Knowledge and Data Engineering, 28(8), 2216- 2229. https://doi.org/10.1109/tkde.2016.2556661
Xu, Q., Chang, V. & Jayne, C. (2022). A systematic review of social media-based sentiment analysis: Emerging trends and challenges. Decision Analytics Journal 3,
https://doi.org/10.1016/j.dajour.2022.100073
Yuan, Z., Jia, Y. & Yang, S. (2007). Online burst detection over high speed short text streams. In Y. Shi, G. D. van Albada, J. Dongarra & P. M. A. Sloot (Eds.), Computational Science – ICCS 2007 (pp. 717-725). Springer Science+Business Media. https://doi.org/10.1007/978-3-540-72588- 6_119
Zachlod, C., Samuel, O., Ochsner, A. & Werthmüller, S. (2022). Analytics of social media data – State of characteristics and application. Journal of Business Research, 144,
-1076. https://doi.org/10.1016/j.jbusres.2022.02.016
Zeit (2019, September 26). Schock für Sparer: Sparkasse München kündigt 28.000 Sparverträge. ZEIT Online. https://www.zeit.de/news/2019-09/26/wegennullzinsen sparkasse-muenchen-kuendigt28000-vertraege
Zerfass, A., Hagelstein, J. & Tench, R. (2020). Artificial intelligence in communication management: a cross-national study on adoption and knowledge, impact, challenges and risks. Journal of Communication Management, 24(4), 377-389. https://doi.org/10.1108/jcom-10-2019- 0137
Zhang, Y., Lo, S. & Myint, P. (2023). Impact of Difficult Noise on Twitter Crisis Detection. PACIS 2023 Proceedings. 156. https://aisel.aisnet.org/pacis2023/156
Zhong, Z., Yan, S., Li, Z., Tan, D., Yang, T. & Cui, B. (2021). BurstSketch: finding bursts in data streams. Proceedings of the 2021 International Conference in Management of
Data (pp. 2375-2383). Association for Computing Machinery. https://doi.org/10.1145/3448016.3452775
Zhu, C., Du, J., Zhang, Q., Zhu, Z. & Shi, L. (2019). Burst topic detection in real time spatialtemporal data stream. IEEE Access, 7(1), 82709-82720. https://doi.org/10.1109/access.2019.2923682
Zhu, Y. & Shasha, D. (2003). Efficient elastic burst detection in data streams. Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Min-ing (pp. 336-345). Association for Computing Machinery. https://doi.org/10.1145/956750.956789